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It is proved that, for all N> Nj, every polynomial with minimal (uniform)
diophantic deviation from zero in [0, 1] is as follows,

where Q(x) is a polynomial with integer coefficients and 0.1456 < Al < 0.1495,
0.0166 < A2 < 0.0187, 0.0037 < A3 < 0.0053. Also, two general theorems for the case
of the arbitrary intervals are demonstrated. © 1988 Academic Press, Inc.

1. INTRODUCTION

Let H n be the set of all polynomials of degree m ~ n with integral coef
ficients not simultaneously zero:

We write

m

P(x) = L Ck Xk.

k=O

p;n = min max IP(x)l,
PeHn a~x~b

p = lim Pn'
n~ 00

(1)

(2)

(3 )

The existence of the limit (3) was proved by L. G. Shnirelman (see [2,3]).
The polynomials P(x) E H n for which the minimum (2) is attained, that

is, such that

max IP(x)1 = p;n,
a~x~b
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are named polynomials of minimal diophantic (uniform) deviation from
zero in the interval [a, b].

The problem of the asymptotic structure of those polynomials has been
proposed by A. O. Gelfond (see [2,4,6]).

2. FUNDAMENTAL THEOREMS

THEOREM 1. Let

(5)

be a primitive polynomial with integer coefficients such that (ao, aI' ..., an) = 1.
Suppose that its zeros x I, X 2' ... , X n are real and belong to the interval [a, b],
a~xi~b, i= 1, 2, ..., n. Let

rxkn ~ 1, k = 1, ..., v, (6)

be the canonical decomposition in prime factors of the coefficient an and
suppose that

where rxkm ~ 0, (bm, an) = 1, m = 0, 1, ..., n - 1, k = 1, 2, ..., v.
Consider the rational numbers

n
Ak = max -- (rxkn - rxkm) - rxkn,

m = O. I •...• n - I n - m

(7)

(8)

k= 1, 2, ..., v. (9)

If the inequality

(10)

is verified, then for N> N , large enough, every polynomial PN(x) of minimal
diophantic (uniform) deviation from zero in the interval [a, b] vanishes on
the roots of the polynomial f(x).

Proof Multiplyingf(x) by

we have

640/55/3-3

n-I

Af(x) = zn + L Ymzm,
m=O

(11 )

(12)
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where z = Tx and
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v

Y =b 'n p(n-m)(Ak+lXk.)/n-(lXk.-lXkm)/(n-m»
m m k ,

k~l

From the choice of the numbers Ak , the exponents of Pk in (9) are
rational non-negative numbers, and therefore each Ym is an algebraic
integer. Then, the zeros of the polynomial (12)

(13 )

are algebraic numbers as well.
Let

(14)

be a polynomial of degree N with rational integer coefficients and minimal
deviation from zero in [a, b], so that

Consider the expression

PiV N= max IPN(x)l·
a~x~b

(15)

Jl. = 0, 1, ..., n -1, (16)

where the integers 0::::; mkl'::::; n, k = 1, 2, ..., v, have been chosen such that
the numbers

are integers. Then expression (16) can be written as

Iktl (TXk)1' [AN(Txk)N + AN_ 1 T(Txd
N

-
1 + ... + AoT

N
] Ik~l t'!:k",

Jl. = 0, 1, ... n - 1. Every number in this formula is an algebraic integer, and
so they are algebraic integers as well.

By virtue of an appropiate choice of mkl" k = 1, 2, ... , v, the numbers

k = 1, 2, ..., v,
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are rational integers, and consequently, the factor of (16),

is a rational integer.
But the sum

n

L xtPN(xd,
k~l
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is a rational number since it is a symmetric entire function of the zeros of
the polynomial f(x).

Hence BJ.' is a rational number for each J.1. = 0, 1, ..., n -1 and it is an
algebraic integer as well; therefore, it is a nonnegative rational integer,
BJ.'~O.

Now, we shall obtain an upper asymptotic bound of BJ.l'
It is clear that for e > 0 small enough, there exists an integer No such that

VN>No·

As the roots of the polynomial (5) are in [a, b], we have

VN > No, k = 1, 2, ..., n.

Hence, for the numbers in (16) we have

BJ.'~KJ.'n CI]1 tt+mk")C~e)N < 1,

where N 1 is large enough, K = max( Ia I, Ib I), and e > 0 is chosen such that

T<p-e.

As B J.' ~ 0 is a rational integer, we derive that B J.' = 0 and so from (16)
follows

for every N> N 1 •

Suppose that

n

L XkPN(xd=O,
k=l

J.1. = 0, 1, ..., n - 1, (17)
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are the roots of the polynomial f(x) and n1, ..., nq are their multiplicities,
respectively, so that nl + ... +nq=n. We can write (17) as

q

L nkxXPN(Xk)=O,
k~l

J1 = 0, 1, ..., n - 1,

as q is the rank of the matrix II nkx~ II, and it follows that

k=O, 1, ..., q.

The theorem is proved.

We now present some particular cases.
If an = 1, condition (10) is

p>1.

If an = p is prime, then condition (10) takes the form

T=pl/(n-m)<p,

(18)

(19)

where m is the maximum degree of the terms III (5) with coefficients
satisfying the condition (am, p)= 1.

3. AUXILIAR-LEMMA

In 1892, V. A. Markov [10] proved that for the derivative of order r of a
polynomial Pn(x) of degree n with real coefficients the following inequality
is satisfied,

where M=max a .- x .- b IPn(x)l.
By means of this inequality, we shall show the following lemma which

will be used later.

LEMMA. The derivative of order r = An, 0 < A< 1, of every polynomial
Pn(x) of degree n and real coefficients satisfies the inequality

r! C(A)
max IP);)(x)1 < M (b )r· r: U(A),

a:f;x~b -a yn
(21 )



where
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(22)

and M = maxa.;x';b IPn(x)l.

Proof It is easy to verify that V. A. Markov's inequality (20) can be
written in the form

IP~)(x)1 4
r n (n +r)max <M .-- .

a';x.;b r! (b-aY n+r n-r

Applying the Stirling formula, we obtain

(
n + r) (n + rt+

r
~ 1/12

n-r < (n-rt- r(2r)2rV~e .

By means of the substitution r = ..1.n, we write

(n+ r) el
/
12(1 +..1.) 1

< ·--Ln(..1.).
n - r 2J 11:..1.( 1- ..1. 2 ) 4),n,J;;

and so, from (23), we obtain the inequality (21).

4. BOUNDS FOR THE MULTIPLICITY ORDERS

(23)

Now we shall apply (21) to find bounds for the multiplicity orders of the
roots XI' ... , X q of the polynomials PN( x).

THEOREM 2. Suppose the conditions of Theorem 1 are satisfied. Let r be
an integer such that 1~ r < N, r = N..1., 0 <..1. < 1.

If

(24)

then each root of the polynomialf(x) is a zero of the polynomials PN(x) of
the above theorem with multiplicity order greater than or equal to r = N..1..

Proof As (l/r!) Pk;l(x) has integer coefficients, by applying the above
argument to the expression

we derive that they are rational integers.

/l = 0, 1, ..., n - 1, (25)
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By virtue of inequality (21), the numbers in (25) are dominated by

and this is less than

(
V) C(A.) I Tj-AL(A.) INKl'n n (I'+mk" -- < 1

k~ j k ~ (p - t:)( b"- a)A '

where N j is large enough and t: > 0 is chosen such that the following
inequality holds:

Hence, as before, we deduce

n

L x~P~)(Xk)=O,
k~j

for every N> N j, and so

P~)(Xk) = 0,

The theorem is proved.

jJ.=0, 1, ..., n-l,

k= 1, 2, ..., q.

5. CASE OF THE INTERVAL [0, 1]

In the case of the interval [0, 1], it is known [5] that
2.33071 < p < 2.37686. Obviously, the polynomials

x, x-I, 2x - 1, 5x 2
- 5x + 1, (26)

satisfy the conditions of Theorem 1 since their roots are in [0, 1] and the
corresponding values of Tare 1, 1, 2, y'S, respectively, all of them less than
p. Consequently, the polynomials (26) are divisors of every polynomial of
minimal diophantic (uniform) deviation from zero in the interval [0, 1] for
N> N j , with N j large enough. Thus, we can write

where 'i ~ 1, i = 1, 2, 3,4, and Q(x) is a polynomial with integer coef
ficients. We now shall calculate the multiplicity orders 'i of the polynomials
(26) in the decomposition (27).
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The inequalities corresponding to (24) for these polynomials are
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p P
L(A) < p, L(A) < p, L(A) < 21 - A' L(A) < 5(l-A)/2' (28)

Let At, At, At be the respective roots of the equations

L(A) = p, P
L( A) = 21 _ A' (29)

which are in the interval (0, 1). Applying Theorem 2, we derive the
following statement:

THEOREM 3. For any rational numbers AI' A2 , A3' such that 0 < Al < At,
0< A2 < At, 0 < A3 < At, and every N> N I' each polynomial with integer
coefficients P N(X) of minimal (uniform) deviation from zero in the interval
[0, 1] has the form

PN(X) = [x(1 - x)] [NAIJ (2x - 1) [NA2J (5x 2 - 5x + 1)[NA1J Q(x), (30)

where Q(x) is a polynomial with integer coefficients. Here [NA;] denotes the
integer part of NA i and N I is large enough.

In [11] Sanov observes that it is possible to show that p > 2.343. By
using this lower bound, we obtain

At = 0.1456... , At = 0.0166,.., At = 0.0037". (31 )

On the other hand, by means of the upper bound p < 2.37686, we obtain

A;* = 0.1494,.., A;* = 0.0186,.., A)* = 0.0052,.., (32)

which means that the numbers AI' A2 , A3 in (30) can be respectively
considered such that At < Ai < A~, i = 1,2,3.

Finally, we recommend that the reader consult [7], which contains an
extensive bibliography of the topic of this paper (see also [1,8,9,12]).
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