On the Asymptotic Structure of the Polynomials of Minimal Diophantic Deviation from Zero

EMILIANO APARICIO BERNARDO

Department of Mathematics, University of the Basque Country, 48071 Bilbao, Spain

Communicated by J. Peetre

Received October 29, 1985

It is proved that, for all $N > N_1$, every polynomial with minimal (uniform) diophantic deviation from zero in [0, 1] is as follows,

$$P_N(x) = [x(1-x)]^{[N\lambda_1]} (2x-1)^{[N\lambda_2]} (5x^2 - 5x + 1)^{[N\lambda_3]} Q(x),$$

where Q(x) is a polynomial with integer coefficients and $0.1456 < \lambda_1 < 0.1495$, $0.0166 < \lambda_2 < 0.0187$, $0.0037 < \lambda_3 < 0.0053$. Also, two general theorems for the case of the arbitrary intervals are demonstrated. © 1988 Academic Press, Inc.

1. INTRODUCTION

Let H_n be the set of all polynomials of degree $m \le n$ with integral coefficients not simultaneously zero:

$$P(x) = \sum_{k=0}^{m} c_k x^k.$$
 (1)

We write

$$\rho_n^{-n} = \min_{P \in H_n} \max_{a \le x \le b} |P(x)|, \qquad (2)$$

$$\rho = \lim_{n \to \infty} \rho_n. \tag{3}$$

The existence of the limit (3) was proved by L. G. Shnirelman (see [2, 3]).

The polynomials $P(x) \in H_n$ for which the minimum (2) is attained, that is, such that

$$\max_{a \leqslant x \leqslant b} |P(x)| = \rho_n^{-n}, \tag{4}$$

0021-9045/88 \$3.00 Copyright © 1988 by Academic Press, Inc. All rights of reproduction in any form reserved. are named polynomials of minimal diophantic (uniform) deviation from zero in the interval [a, b].

The problem of the asymptotic structure of those polynomials has been proposed by A. O. Gelfond (see [2, 4, 6]).

2. FUNDAMENTAL THEOREMS

THEOREM 1. Let

$$f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$$
(5)

be a primitive polynomial with integer coefficients such that $(a_0, a_1, ..., a_n) = 1$. Suppose that its zeros $x_1, x_2, ..., x_n$ are real and belong to the interval [a, b], $a \leq x_i \leq b$, i = 1, 2, ..., n. Let

$$a_n = p_1^{\alpha_{1n}} \cdots p_v^{\alpha_{vn}}, \qquad \alpha_{kn} \ge 1, \, k = 1, \, \dots, \, v, \tag{6}$$

be the canonical decomposition in prime factors of the coefficient a_n and suppose that

$$a_m = p_1^{\alpha_{1m}} \cdots p_v^{\alpha_{vm}} b_m, \tag{7}$$

where $\alpha_{km} \ge 0$, $(b_m, a_n) = 1$, m = 0, 1, ..., n - 1, k = 1, 2, ..., v. Consider the rational numbers

$$\lambda_k = \max_{m=0, 1, \dots, n-1} \frac{n}{n-m} (\alpha_{kn} - \alpha_{km}) - \alpha_{kn}, \qquad (8)$$

$$t_k = p_k^{(\lambda_k + \alpha_{kn})/n}, \qquad k = 1, 2, ..., v.$$
 (9)

If the inequality

$$T = \prod_{k=1}^{v} t_k < \rho, \tag{10}$$

is verified, then for $N > N_1$ large enough, every polynomial $P_N(x)$ of minimal diophantic (uniform) deviation from zero in the interval [a, b] vanishes on the roots of the polynomial f(x).

Proof. Multiplying f(x) by

$$A = p_1^{\lambda_1} \cdots p_v^{\lambda_v}, \tag{11}$$

we have

$$Af(x) = z^{n} + \sum_{m=0}^{n-1} \gamma_{m} z^{m}, \qquad (12)$$

640/55/3-3

where z = Tx and

$$\gamma_m = b_m \prod_{k=1}^{\nu} p_k^{(n-m)((\lambda_k + \alpha_{kn})/n - (\alpha_{kn} - \alpha_{km})/(n-m))},$$

From the choice of the numbers λ_k , the exponents of p_k in (9) are rational non-negative numbers, and therefore each γ_m is an algebraic integer. Then, the zeros of the polynomial (12)

$$z_1 = Tx_1, ..., z_n = Tx_n \tag{13}$$

are algebraic numbers as well.

Let

$$P_N(x) = A_N x_N + A_{N-1} x^{N-1} + \dots + A_1 x + A_0$$
(14)

be a polynomial of degree N with rational integer coefficients and minimal deviation from zero in [a, b], so that

$$\rho_N^{-N} = \max_{a \le x \le b} |P_N(x)|.$$
(15)

Consider the expression

$$B_{\mu} = \left| \sum_{k=1}^{n} x_{k} P_{N}(x_{k}) \right| \prod_{k=1}^{\nu} t_{k}^{N+\mu+m_{k\mu}}, \qquad \mu = 0, 1, ..., n-1,$$
(16)

where the integers $0 \le m_{k\mu} \le n$, k = 1, 2, ..., v, have been chosen such that the numbers

$$\frac{\lambda_k + \alpha_{kn}}{n} \left(N + \mu + m_{k\mu} \right)$$

are integers. Then expression (16) can be written as

$$\left|\sum_{k=1}^{n} (Tx_{k})^{\mu} \left[A_{N}(Tx_{k})^{N} + A_{N-1}T(Tx_{k})^{N-1} + \dots + A_{0}T^{N}\right]\right| \prod_{k=1}^{\nu} t_{k}^{m_{k\mu}},$$

 $\mu = 0, 1, \dots n - 1$. Every number in this formula is an algebraic integer, and so they are algebraic integers as well.

By virtue of an appropiate choice of $m_{k\mu}$, k = 1, 2, ..., v, the numbers

$$t_k^{N+\mu+m_k} = p_k^{((\alpha_{kn}+\lambda_k)/n)(N+\mu+m_{k\mu})}, \qquad k = 1, 2, ..., v,$$

272

are rational integers, and consequently, the factor of (16),

$$\prod_{k=1}^{v} t_k^{N+\mu+m_{k\mu}},$$

is a rational integer.

But the sum

$$\sum_{k=1}^n x_k^{\mu} P_N(x_k),$$

is a rational number since it is a symmetric entire function of the zeros of the polynomial f(x).

Hence B_{μ} is a rational number for each $\mu = 0, 1, ..., n-1$ and it is an algebraic integer as well; therefore, it is a nonnegative rational integer, $B_{\mu} \ge 0$.

Now, we shall obtain an upper asymptotic bound of B_{μ} .

It is clear that for $\varepsilon > 0$ small enough, there exists an integer N_0 such that

$$\rho_N > \rho - \varepsilon, \qquad \forall N > N_0.$$

As the roots of the polynomial (5) are in [a, b], we have

$$|P_N(x_k)| \leq \rho_N^{-N} < \frac{1}{(\rho - \varepsilon)^N}, \quad \forall N > N_0, \, k = 1, \, 2, \, ..., \, n.$$

Hence, for the numbers in (16) we have

$$\boldsymbol{B}_{\mu} \leq K^{\mu} n \left(\prod_{k=1}^{v} t_{k}^{\mu+m_{k\mu}} \right) \left(\frac{T}{\rho-\varepsilon} \right)^{N} < 1, \qquad \forall N > N_{1},$$

where N_1 is large enough, $K = \max(|a|, |b|)$, and $\varepsilon > 0$ is chosen such that

$$T < \rho - \varepsilon$$
.

As $B_{\mu} \ge 0$ is a rational integer, we derive that $B_{\mu} = 0$ and so from (16) follows

$$\sum_{k=1}^{n} x_k P_N(x_k) = 0, \qquad \mu = 0, 1, ..., n-1,$$
(17)

for every $N > N_1$.

Suppose that

$$x_1, ..., x_q, \qquad q \leq n,$$

are the roots of the polynomial f(x) and $n_1, ..., n_q$ are their multiplicities, respectively, so that $n_1 + \cdots + n_q = n$. We can write (17) as

$$\sum_{k=1}^{q} n_k x_k^{\mu} P_N(x_k) = 0, \qquad \mu = 0, \ 1, \ ..., \ n-1,$$

as q is the rank of the matrix $||n_k x_k^{\mu}||$, and it follows that

 $P_N(x_k) = 0, \qquad k = 0, 1, ..., q.$

The theorem is proved.

We now present some particular cases. If $a_n = 1$, condition (10) is

$$\rho > 1. \tag{18}$$

If $a_n = p$ is prime, then condition (10) takes the form

$$T = p^{1/(n-m)} < \rho, \tag{19}$$

where *m* is the maximum degree of the terms in (5) with coefficients satisfying the condition $(a_m, p) = 1$.

3. AUXILIAR-LEMMA

In 1892, V. A. Markov [10] proved that for the derivative of order r of a polynomial $P_n(x)$ of degree n with real coefficients the following inequality is satisfied,

$$\max_{a \le x \le b} |P_n^{(r)}(x)| \le M \frac{2^r}{(b-a)^r} \cdot \frac{n^2(n^2-1^2)(n^2-2^2)\cdots(n^2-(r-1)^2)}{(2r-1)!!},$$
(20)

where $M = \max_{a \leq x \leq b} |P_n(x)|$.

By means of this inequality, we shall show the following lemma which will be used later.

LEMMA. The derivative of order $r = \lambda n$, $0 < \lambda < 1$, of every polynomial $P_n(x)$ of degree n and real coefficients satisfies the inequality

$$\max_{a \leqslant x \leqslant b} |P_n^{(r)}(x)| < M \frac{r!}{(b-a)^r} \cdot \frac{C(\lambda)}{\sqrt{n}} L^n(\lambda),$$
(21)

where

$$C(\lambda) = \frac{e^{1/12}}{2\sqrt{\pi\lambda(1-\lambda^2)}}, \qquad L(\lambda) = \frac{(1+\lambda)^{1+\lambda}}{(1-\lambda)^{1-\lambda}\lambda^{2\lambda}}, \qquad (22)$$

and $M = \max_{a \leq x \leq b} |P_n(x)|$.

Proof. It is easy to verify that V. A. Markov's inequality (20) can be written in the form

$$\max_{a \le x \le b} \frac{|P_n^{(r)}(x)|}{r!} < M \frac{4^r}{(b-a)^r} \cdot \frac{n}{n+r} \binom{n+r}{n-r}.$$
(23)

Applying the Stirling formula, we obtain

$$\binom{n+r}{n-r} < \frac{(n+r)^{n+r}}{(n-r)^{n-r} (2r)^{2r}} \sqrt{\frac{n+r}{4\pi r(n-r)}} e^{1/12}.$$

By means of the substitution $r = \lambda n$, we write

$$\binom{n+r}{n-r} < \frac{e^{1/12}(1+\lambda)}{2\sqrt{\pi\lambda(1-\lambda^2)}} \cdot \frac{1}{4^{\lambda n}\sqrt{n}} L^n(\lambda).$$

and so, from (23), we obtain the inequality (21).

4. BOUNDS FOR THE MULTIPLICITY ORDERS

Now we shall apply (21) to find bounds for the multiplicity orders of the roots $x_1, ..., x_q$ of the polynomials $P_N(x)$.

THEOREM 2. Suppose the conditions of Theorem 1 are satisfied. Let r be an integer such that $1 \le r < N$, $r = N\lambda$, $0 < \lambda < 1$. If

$$\frac{L(\lambda)}{(b-a)^{\lambda}} < \frac{\rho}{T^{1-\lambda}},\tag{24}$$

then each root of the polynomial f(x) is a zero of the polynomials $P_N(x)$ of the above theorem with multiplicity order greater than or equal to $r = N\lambda$.

Proof. As $(1/r!) P_N^{(r)}(x)$ has integer coefficients, by applying the above argument to the expression

$$\frac{1}{r!} \left| \sum_{k=1}^{n} x_k P_N^{(r)}(x_k) \right| \prod_{k=1}^{\nu} t_k^{N-r+\mu+m_{k\mu}}, \qquad \mu = 0, 1, ..., n-1,$$
(25)

we derive that they are rational integers.

By virtue of inequality (21), the numbers in (25) are dominated by

$$K^{\mu}n\left(\prod_{k=1}^{v}t_{k}^{\mu+m_{k\mu}}\right)\frac{C(\lambda)}{\sqrt{N}}\left|\frac{T^{1-\lambda}L(\lambda)}{\rho_{N}(b-a)^{\lambda}}\right|^{N},$$

and this is less than

$$K^{\mu}n\left(\prod_{k=1}^{\nu}t_{k}^{\mu+m_{k\mu}}\right)\frac{C(\lambda)}{\sqrt{n}}\left|\frac{T^{1-\lambda}L(\lambda)}{(\rho-\varepsilon)(b-a)^{\lambda}}\right|^{N}<1,\qquad\forall N>N_{1},$$

where N_1 is large enough and $\varepsilon > 0$ is chosen such that the following inequality holds:

$$\frac{T^{1-\lambda}L(\lambda)}{(b-a)^{\lambda}} < \rho - \varepsilon.$$

Hence, as before, we deduce

$$\sum_{k=1}^{n} x_{k}^{\mu} P_{N}^{(r)}(x_{k}) = 0, \qquad \mu = 0, 1, ..., n-1,$$

for every $N > N_1$, and so

$$P_N^{(r)}(x_k) = 0, \qquad k = 1, 2, ..., q.$$

The theorem is proved.

5. Case of the Interval [0, 1]

In the case of the interval [0, 1], it is known [5] that $2.33071 < \rho < 2.37686$. Obviously, the polynomials

$$x, x-1, 2x-1, 5x^2-5x+1,$$
(26)

satisfy the conditions of Theorem 1 since their roots are in [0, 1] and the corresponding values of T are 1, 1, 2, $\sqrt{5}$, respectively, all of them less than ρ . Consequently, the polynomials (26) are divisors of every polynomial of minimal diophantic (uniform) deviation from zero in the interval [0, 1] for $N > N_1$, with N_1 large enough. Thus, we can write

$$P_N(x) = x^{r_1}(1-x)^{r_2} (2x-1)^{r_3} (5x^2-5x+1)^{r_4} Q(x), \qquad \forall N > N_1, (27)$$

where $r_i \ge 1$, i = 1, 2, 3, 4, and Q(x) is a polynomial with integer coefficients. We now shall calculate the multiplicity orders r_i of the polynomials (26) in the decomposition (27).

The inequalities corresponding to (24) for these polynomials are

$$L(\lambda) < \rho, L(\lambda) < \rho, L(\lambda) < \frac{\rho}{2^{1-\lambda}}, L(\lambda) < \frac{\rho}{5^{(1-\lambda)/2}}.$$
 (28)

Let λ_1^* , λ_2^* , λ_3^* be the respective roots of the equations

$$L(\lambda) = \rho, \qquad L(\lambda) = \frac{\rho}{2^{1-\lambda}}, \qquad L(\lambda) = \frac{\rho}{5^{(1-\lambda)/2}}, \tag{29}$$

which are in the interval (0, 1). Applying Theorem 2, we derive the following statement:

THEOREM 3. For any rational numbers $\lambda_1, \lambda_2, \lambda_3$, such that $0 < \lambda_1 < \lambda_1^*$, $0 < \lambda_2 < \lambda_2^*$, $0 < \lambda_3 < \lambda_3^*$, and every $N > N_1$, each polynomial with integer coefficients $P_N(x)$ of minimal (uniform) deviation from zero in the interval [0, 1] has the form

$$P_{N}(x) = [x(1-x)]^{[N\lambda_{1}]} (2x-1)^{[N\lambda_{2}]} (5x^{2}-5x+1)^{[N\lambda_{3}]} Q(x), \quad (30)$$

where Q(x) is a polynomial with integer coefficients. Here $[N\lambda_i]$ denotes the integer part of $N\lambda_i$ and N_1 is large enough.

In [11] Sanov observes that it is possible to show that $\rho > 2.343$. By using this lower bound, we obtain

$$\lambda_1^* = 0.1456..., \quad \lambda_2^* = 0.0166..., \quad \lambda_3^* = 0.0037...$$
 (31)

On the other hand, by means of the upper bound $\rho < 2.37686$, we obtain

$$\lambda_1^{\prime *} = 0.1494..., \quad \lambda_2^{\prime *} = 0.0186..., \quad \lambda_3^{\prime *} = 0.0052..., \quad (32)$$

which means that the numbers λ_1 , λ_2 , λ_3 in (30) can be respectively considered such that $\lambda_1^* < \lambda_i < \lambda_i^*$, i = 1, 2, 3.

Finally, we recommend that the reader consult [7], which contains an extensive bibliography of the topic of this paper (see also [1, 8, 9, 12]).

References

- 1. D. GEORGE ANDRIA, Approximation of continuous functions by polynomials with integral coefficients, J. Approx. Theory 4 (1971), 357-362.
- 2. EMILIANO APARICIO BERNARDO, "On Extremal Properties of Polynomials with Integral Coefficients and Approximation Functions and Their Polynomials, pp, 1–4, Dissertation. Moscow State University, Moscow, 1954. [Abstract, Russian]

EMILIANO APARICIO BERNARDO

- EMILIANO APARICIO BERNARDO, Sobre la aproximación de las funciones mediante polinomios de coeficientes enteros, in "Actas de la Octava Reunión Anual de Matemáticos Españoles, Madrid, 1967." pp. 21-33.
- 4. EMILIANO APARICIO BERNARDO, Estructura asintótica de los polinomios con coeficientes enteros de desviación mínima a cero en el segmento [0, 1], *in* "Actas de las III Jornadas Matemáticas Hispano-Lusitanas, Sevilla, 1974, Univ. de Sevilla, 1975," Vol. I, 1.19–1.32.
- 5. EMILIANO APARICIO BERNARDO, Sobre unos sistemas de números enteros algebraicos de D. S. Gorshkov y sus aplicaciones al cálculo, *Rev. Mat. Hisp-Amer.* (4) 41, Nos. 1, 2 (1981), 3-17.
- 6. EMILIANO APARICIO BERNARDO, On some results in the problem of diophantine approximation of functions by polynomials, *Proc. Steklov Inst. Math.* 163 (1984), 6–9 (Russian); *Trans. Amer. Math. Soc.* (1986), Issue 4, 7–10.
- LE BARON O. FERGUSON, "Approximation by polynomials with integral coefficients," Math. Surveys, Vol. 17, American Mathematical Society, Providence, RI, 1980.
- 8. A. O. GELFOND, On uniform approximation by polynomials with rational integral coefficients, Uspehi Mat. Nauk 10, No. 1(63) (1955), 41-65. [Russian]
- 9. EDWIN HEWITT, AND H. S. ZUCKERMAN, Approximation by polynomials with integral coefficients, a reformulation of the Stone-Weierstrass theorem, *Duke Math. J.* 26 (1959), 305-324.
- 10. I. P. NATANSON, "Constructive Function Theory", Vols. I, II, Ungar, New York, 1964–1965.
- 11. I. N. SANOV, Functions with integral parameters, deviating the least from zero, Leningrad. Gos. Univ. Uchen. Zap. Ser. Mat. Nauk 111 (1949), 32-46.
- 12. R. M. TRIGUB, Approximation of functions by polynomials with integral coefficients, *Izv. Akad. Nauk SSSR Ser. Mat.* 26 (1962), 261–280. [Russian]